A Generalized Symbolic Thomas Algorithm
نویسنده
چکیده
The current paper is mainly devoted to construct a generalized symbolic Thomas algorithm that will never fail. Two new efficient and reliable computational algorithms are given. The algorithms are suited for implementation using computer algebra systems (CAS) such as Mathematica, Macsyma and Maple. Some illustrative examples are given.
منابع مشابه
Regularized Generalized Canonical Correlation Analysis Extended to Symbolic Data
Regularized Generalized Canonical Correlation Analysis (RGCCA) is a component-based approach which aims at studying the relationship between several blocks of numerical variables. In this paper we propose a method called Symbolic Generalized Canonical Correlation Analysis (Symbolic GCCA) that extends RGCCA to symbolic data. It is a versatile tool for multi-block data analysis that can deal with...
متن کاملSecond-Order Matching modulo Evaluation: A Technique for Reusing Proofs
We investigate the improvement of theorem provers by reusing previously computed proofs. A proof of a conjecture is generalized by replacing function symbols with function variables. This yields a schematic proof of a schematic conjecture which is instantiated subsequently for obtaining proofs of new, similar conjectures. Our reuse method requires solving so-called free function variables, i.e....
متن کاملRule Extraction from Self-Organizing Networks
Abstract. Generalized relevance learning vector quantization (GRLVQ) [4] constitutes a prototype based clustering algorithm based on LVQ [5] with energy function and adaptive metric. We propose a method for extracting logical rules from a trained GRLVQ-network. Real valued attributes are automatically transformed to symbolic values. The rules are given in the form of a decision tree yielding se...
متن کاملA New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کامل